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Abstract-The uniaxial creep deformation of a material containing a doubly periodic square array of
circular cylindrical voids is studied under plane strain conditions. A variational principle for incompressible
nonlinear viscous behavior is used as the basis for implementing a finite element solution. The effects of
large, time dependent deformation are included in the formulation. A power law creep relationship is used
and results are obtained for the influence of different stress exponents on the overall ductility. The void
shape evolution and zones of concentrated deformation are described under increasing overall strain.

I. INTRODUCTION
Fracture of polycrystalline solids under creep conditions typically occurs by the growth and
coalescence of microscopic voids that form in the grain boundaries[I-3]. The corresponding
ductility is often very low, even for metals and alloys that are quite ductile at room
temperature. Most of the theories that have been developed for intergranular fracture at
elevated temperatures are based on the premise that voids grow by the absorption of
vacancies [4-8]. It is known that a sufficient number of vacancies can be generated in the grain
boundaries and transported by diffusion to the growing voids. The rate of void growth can be
obtained by solving the diffusion boundary value problem associated with a model for growth
by vacancy absorption. Following this approach, a related expression for the time to rupture, t"
invariably exhibits a reciprocal dependence on the applied stress (t, - 0'-1)[5]. However, it is
often observed that t, is actually proportional to 0'-m where m > 1.0 (typically 3~ m ~ 50 [9­
12]). If mechanisms for void nucleation are included in the analysis, values of m > 1.0 can be
derived, but close correlation with experiments is rare [13]. Furthermore, these same experi­
mental results, which pertain to the power law regime of creep, indicate that this value of m
frequently corresponds to the stress exponent, n, in the expression iss = {JO'" [14-16]. Here iss
is the steady state or minimum creep rate in the typical three stage (primary, steady state,
tertiary) description of creep deformation. In addition, the temperature dependences for both
creep and fracture are almost always related. These observations were made first by Monkman
and Grant[14] who suggested that creep fracture occurs when isst, = C, where C is a constant.
This is known as the Monkman-Grant relation, with C being a measure of creep ductility.

The validity of this empirical relation implies that steady state creep dominates the creep process
and suggests that the mechanism for fracture is closely linked to creep itself. A number of other
experimental observations also support the view that vacancy diffusion to the void surface may
not be the rate controlling mechanism in cavity growth.

It has been found that the rate of cavity growth for an alloy is markedly lower than that for
the pure material under the same creep conditions, even though the alloy additions do not
change the diffusion coefficients substantially. Furthermore, the decrease in cavity growth rate
on alloying is comparable with the observed decrease in creep rate[1?, 18].

The fact that there is an apparent relationship between the creep and rupture processes
(m = n), leads to the conjecture that if creep fracture occurs by void growth, then the growth is
dominated by the mechanism for creep itself. Hence, void growth might be attributed to the
inhomogeneous plastic deformation of the surrounding grains. A model for creep fracture can
then be developed in the context of continuum plasticity. This is the approach which has been
taken in the study of the ductile rupture of time independent elastic-plastic materials [19-21].

Any model for high temperature integranular fracture based on the growth of voids by creep
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inherently contains the apparent connection between deformation and rupture time. The
predictions of the model would be automatically consistent with the form of the Monkman­
Grant relation, although the value of the constant C would be predicted only if the model
includes the dominant features of the actual physical situation [22]. To begin the development of
a comprehensive description of creep fracture, the relation between the growth of a void and
remotely imposed uniform stress and strain rate fields must be found. An important aspect of
this treatment is the extent to which voids interact, or, alternatively, the extent to which the
triaxial stress state resulting from void interactions contributes to void coalescence [23]. This
aspect has already been considered in the study of void growth in materials with time
independent plastic behavior. These studies [19-2l], for the most part, have not considered
interaction effects per se as only single isolated voids are treated. However, they show clearly
that finite fracture strains can be predicted only when a void lies in the neighborhood of other
voids even though the far field stress state is one of simple tension.

The purpose of the present study is to examine the influence of void interaction on ductility
when the material behavior is time dependent plastic in nature and is described by the steady
state power law creep relation. A particular void growth boundary value problem is considered
in which a stress triaxiality is provided by void interactions. It is the nonlinearly viscous analog
to the time independent elastic-plastic analysis performed by Needleman[24]. Specifically it is
the study of the creep deformation of a doubly periodic array of cylindrical voids under the
action of a uniaxially applied displacement rate. The particular creep rupture model which is
considered serves mainly to demonstrate the capability of a computational scheme to analyze
inhomogeneous creep deformation and to give some initial insight into the development of a
more realistic model for intergranular fracture.

In the following sections a variational principle is described for strictly incompr~ssible

viscous flow. A discretization of the principle is shown which is suitable for nonlinear material
behavior and finite deformation. The results of the void growth study are then presented.

2. A VARIATIONAL PRINCIPLE FOR CREEP
Finite element formulations for the analysis of time dependent plastic deformation have, for

the most part, been restricted to the study of infinitesimal deformation [25-27]. The deformation
is considered to be elastic-time dependent plastic in nature. The plastic component of strain is
treated in a pseudo-elastic fashion. These so-called initial strain formulations are subject to
numerical instability in the computational procedure [28]. For this reason only small increments
of plastic deformation can be taken in each step and therefore the analysis of finite time
dependent deformation by this method is not practical. A more productive approach to the
analysis of finite creep deformation can be made if elastic effects are neglected.

The field equations which govern steady state creep are given below, For equilibrium we
have

Uji,i + Xi = 0, (1)

where Uij are the stress components. It is assumed that inertial effects for creeping flow can be
neglected and that the body force term, Xj, is only a function of position. For incompressibility
we write

Uu =0, (2)

where Ui is the ith component of displacement rate. The constitutive relation may be written as

where I-' is the viscosity coefficient, p =- ukJc13, and iij =Eii when eqn (2) is satisfied. Also

. 1 ( . .)
Eij = 2 Ui,j + Ui,i •

(3)

(4)
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The current configuration is chosen as the reference state in which the material is considered to
occupy the volume V, bounded by the surface S over a portion of which, S t, surface tractions,
f j, are. prescribed and a complementary portion, Sil, over which displacement rates, ii, are
prescribed. Hence

and on Sf, (5)

It follows from eqns (1) and (3) that

U; = Uj

O'ji,i = - Pi,; +P,Uj,ii'

(6)

(7)

A solution is sought for a velocity field which makes stationary a functional and which
satisfies prescribed velocity boundary conditions (eqn 6). The Euler equations must be the field
equations governing the response of the material. A suitable functional is the rate form of the
potential energy

or

I = f O'j/-Ejj dV - ( fjuj dS - f XjUj d V,
v J~ v

1= ( O'jiEjidV-f pE;;dV- ( T;u;dS- ( XjujdV,
Jv v JSt Jv

(8)

(9)

where again use has been made of the fact that E'ji =Eji for strictly incompressible plastic flow,
The first tems on the r.h.s. of the above expression represents the rate of dissipation of internal
energy. The second term serves to enforce a constraint on the admissible velocity fields to only
incompressible deformation. The hydrostatic pressure, P, acts as a Lagrangian multiplier and is
not derivable from the velocity field. The latter terms in eqn (9) represent the rate of change of
external work done on the system. The functional is a function of both the velocity and
pressure fields. Hence, a hybrid formulation is required. When the functional is made stationary
then the first variation with respect to all variables is zero,

The Euler equations corresponding to variations in the velocity field are therefore

P,(Uj,ii + ui,ii) - p,j +X j = 0,

and for variations in the hydrostatic pressure field

Ui,i =0.

Substituting eqn (12) into eqn (11) yields

P,U;,ii - p,; + Xj = o.

(10)

(11)

(12)

(13)

Hence, equilibrium and incompressibility are identically satisfied when this functional is made
stationary.

The specific functions, Uj and p, which give rise to a stationary value of I, are obtained from
the solution of

M =f O'iPEji d V - f /)pEjj d V - f p/)i:jj d V - f fj/)uj dS - f Xj/)Uj d V =0, (14)
v v v Sf v



58 M. A. BURKE and W. D. NIX

where variations with respect to displacement rates imply corresponding variations in strain
rate according to the linear strain rate-velocity relationship (eqn 4).

If the hydrostatic pressure variable is transformed to h, where

h =_E- =ukk13,
J.L J.L

(15)

and the deviatoric components of stress are expressed in terms of strain rate, the variational
equality is given as

The solution to the boundary value problem, to be discussed subsequently, will be obtained
by a discretization of eqn (16). Nonlinear viscous incompressible deformation can be treated by
solving this equation in an iterative manner.

3. A FINITE ELEMENT DISCRETIZATION
The components of displacement rate at a generic point (xJ, Xt) are described in an

approximate manner according to the finite element method of analysis by the relationship

(17)

Here, {U} is the vector of nodal point displacement rates and [Nul is the matrix of interpolating
functions which are associated with each of the nodes. Similarly, the hydrostatic function can
be approximated by the relationship

(18)

A different set of interpolating functions is chosen to describe the pressure distribution. The
reason for this will be described subsequently. It follows from eqn (17) and the definition of the
rate of deformation that

(19)

where

(20)

Also,

(21)

where [Ll is a differential operator matrix which takes the form

(22)

for planar deformation.
The rate of dilatation can also be expressed in terms of nodal point displacement rates by

the relationship

where

{MV = [l 1 0].

(23)

(24)
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A discrete form for the variation of the potential energy can be obtained by substitution of
the above matrix terms into eqn (16). Hence,

8/ ={8UV[(L[N~f[C][N~]dV)' {O}+ (f)N'uf{M}JL[Nh ] dV)' {H}

-!sf IN u]T{T}dS] +{8HV[(1INhlTJL{M}TINu}dV)' {O}] =0, (25)

where

[

2JL
[c}= g (26)

The body force term which appears in eqn (16) has been omitted at this stage as it is not
required for the boundary value problems which will be considered here. Since eqn (25) must
hold for any admissible and independent variations of the displacement rates or the hydrostatic
variables, then each of the bracketed terms appearing in this expression must be equal to zero.
A set of simultaneous algebraic equations can then be developed to solve for the discrete values
of the unknowns. The integral expressions appearing as coefficients in the variational equality
can be evaluated by virtue of the characteristics ascribed to a finite element or region. The
solution is then obtained from the following set of equations

(27)

where subscripts i and j refer to a particular element. The total number of elements is Ne and
N. is the number of elements with a surface, Sp along that portion of the boundary, Sf, where
tractions are prescribed. The superscript k refers to the subset of interpolating functions for
element j that is associated with nodal points along the traction boundary. Since eqn (27)
contains first order derivatives of the displacement rate, the interpolative description for this
variable must be continuous across inter-element boundaries. Continuity of higher order
derivatives of the displacement rate, the pressure function, and its derivatives is not required.
This condition will just be satisfied by employing a linear approximation for the displacement
rate field and by allowing the pressure function to be a constant over the region of one element.

For this particular study an eight node isoparametric element was used. Hence, the
components of displacement rate are described within an element by the following

i =1,2 (28)

where U, 11) are the normalized coordinates of the element. Equation (28) provides a higher
order polynomial approximation of the displacement rate than that required for continuity but it
is a convenient representation when consideration is given to the functional form of the
pressure distribution.

The proper functional form of the hydrostatic pressure variable can be determined by
considering the last term in eqn (25) which can now be written as

(29)
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These equations represent the constraint on the allowable displacement rates which enforces
incompressibility. The latter part of the integrand

(30)

is a polynomial expression for tbe rate of dilatation throughout element i. The remaining terms
in the integrand

(31)

represent a polynomial approximation for the variation in hydrostatic pressure throughout the
element in terms of the nodal point values of the pressure function. If the description of the
pressure function is taken as a constant throughout one element then the integrand of eqn (29)
reduces to

Bpi fv{MV[N~MO}i dV.
I

(32)

If this quantity is identically zero for all variations, Spi' then the integrand itself must be equal
to zero and the total volume of an element will remain unchanged. However, it cannot be
inferred that the condition of pointwise incompressibility has been met. If a higber order
polynomial approximation is taken for the pressure field, then each coefficient in the resulting
polynomial

is dependent upon the particular values choscn for tbe components of {8B}i' This expression
cannot be identically equal to zero for any {8B}; unless the polynomial expression for Eii is zero
at all points within the element. The degree of the polynomial which describes the pressure
function determines the number of nodal point values that are associated with each element,
and correspondingly, the number of constraint equations associated with the nodal point
displacement rates. A degree of polynomial must therefore be chosen that does not overly
constrain the displacement rates but does provide the closest approximation to pointwise
incompressibility. A polynomial for h(Xh x~ was chosen which had the same degree as that for
E/i(Xh X2). This was accomplished by using the interpolating functions associated with a 4 node
isoparametric element, tbe next lower order element in the family of isoparametric quadrilateral
elements to the 8 node element used for the displacement rate field and the geometric
description. Discrete values of the hydrostatic pressure function were assigned to the corner
nodes of the 8 node element. A dummy pressure function value was also assigned to each of the
mid-side nodes. The associated interpolating function bad a null value. This facilitated the
formation of the element stiftness matrix and the assembly of the overall set of equations as
each node had threedqrees of freedom and could be treated in sequence equally.

If the element nodal point variables are grouped in the foUowing manner

then eqn (27) can be written in the standard form as

(

No ) N,

~ [Kd{rp} = ~ {F!},

where

[Ki ) = !)NTf[D)[NT) dVi•
I

(33)

(34)

(35)



A numerical analysis of void growth in tension creep 61

The matrix [NT] is a partitioned matrix 'consisting of terms from both [N~] and [N,,] such that

The matrix [D] has the form:

{~} = [NT]{tp}. (36)

f[2P.

[D]= l ~

o
2p.
o

P.

(37)

It will be a function of position when the material behavior is nonlinear viscous.

4. THE VOID GROWTH PROBLEM
The specific problem studied is the overall tensile deformation of a doubly periodic square

array of cylindrical voids as shown in Fig. 1. Plane strain deformation is considered in the plane
perpendicular to the cylinder axes (in =0). The initial radius of the void is Ro and the initial
distance between centers of the circles is 21.0. The array is imagined to be divided into square
cells of side 21.0, with one void centered in each cell. By virtue of the dictated symmetry of the
deformation of the array, the behavior of only one quadrant of one cell need be studied. The
boundary value problem associated with this region is illustrated in Fig. 2 for the configuration
at t =O. For convenience and without loss of generality, the displacement rate "2 is taken to be
zero along the XI axis and the displacement rate "I is taken to be zero along the X2 axis. The
boundary conditions along the XI axis are therefore

uix.,O)=O (38a)

Tb.,O)=O (38b)

and
UI(O,X2) =0 (38c)

T2(O,X2)=0 (38d)

along the X2 axis. The boundary condition at the void interface is

Tj=O, j =1,2. (38e)

On the top face of the cell, X2 = 1.0, the boundary conditions are

U2(X., Lo) =V

where ·V is the prescribed displacement rate. On the side of the cell XI =1.0,

(38f)

(38g)

(38h)

(38i)

where W is independent of X2 and is determined by the condition of no constraint in the XI

direction, which is

(38j)
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Fig. I. A creep fracture model-the doubly periodic array of voids.

Fig. 2. A void cell quadrant-the displacement rate boundary value problem for void growth.

~ = 4 (5% VOID CONC.)

Fig. 3. The finite element mesh used to describe deformation of the void cell quadrant.

A cell quadrant is discretized in the manner illustrated in Fig. 3. Tbe unknown displacement
rates and pressure function values can be obtained by solving the matrix equation

[A]{lp}:= {F} (39)

where [A} is tbe assembled summation of element stiffness matrices. Tbe vector {F} is derived
from the displacement rate boundary condition (38f). The void growtb boundary condition (38i)
is satisfied by assigning the same degree of freedom number. 432. whicb is associated with the
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XI component of the displacement rate of node 199 (Fig. 3) to the XI components of nodes
191-198. Column 432 of the [A] matrix then extended beyond the band of nonzero coefficients
associated with the normal connectivity of this mesh. The terms lying above the band were
stored separately to avoid the storage of an excessive number of zero coefficients and a
standard Gauss elimination procedure for solution of the matrix equation was modified to
account for these terms.

5. CONSTITUTIVE BEHAVIOR
The solution of the matrix equation (39) must be obtained in an iterative manner due to the

nonlinear nature of the material response. It was assumed that the creep relationship can be
generalized, by means of the von Mises criterion to describe nonlinear viscous behavior for
multiaxial stress states. Hence, the effective strain rate is given by

where

~ 1(2 .. )
E = 'V 3EijEij

and, the effective stress is obtained from

_ 1(3,,)
U' = 'V "2 U' ijU' ij •

(40)

(41)

(42)

The explicit form of the constitutive relationship for steady state creep behavior is then given
by

-2[ 1 =<I-nl/n].
U'ij - 3f3l]n E Eij'

The viscosity coefficient, therefore, is given by

(43)

(44)

So, for other than linearly viscous behavior (n = I), it can be deduced from eqns (19), (36), (41)
and (44) that

(45)

and eqn (39) is now

(46)

The load vector is denoted as a function of time because the prescribed X2 component of nodal
displacement rate along the top face of the cell was varied with each increment of deformation
so as to maintain a constant overall strain rate, En, in that direction, i.e.

(47)

where L 2 is the current length of the cell.
During any step, r, in the iterative scheme, unless convergence has occurred, eqn (46) will

not be satisfied by the rth solution, {cp Jr. A system of residual forces, {R(cp )}" will exist such
that

(48)

SS Vol. IS. No. I-E
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The iterative procedure which was used in this study was one of successive substitutions of
previous solutions. {q>}" into the reformulation of the current assembly matrix. This technique
which is the simplest to apply also exhibited a reasonable rate of convergence. Iteration was
terminated when

i = I, ... n.

Some further saving in computation was realized in the reformulation of the assembly
matrix at each iteration step by retaining the matrices [NT(~b 71t)] and the coordinate Jacobians
IJUt, '711)1. The matrices [D(~b '711)] can then be readily computed from eqos (36), (41) and (44).
The element stiffness matrices then follow from (35). Convergence was also accelerated in
some instances by assuming as an initial guess for the solution at a particular step an
extrapolation of the solutions at two preceding steps.

6. DISCRETIZATION
The initial solution for a particular value of the creep exponent, n, was found by first

obtaining the linear viscous solution (n = l) where IJ- and [A] are not dependent on the
unknown variables. Solutions were then obtained for successive values of n (t = 0) using the
iterative procedure until the required value was reached. The deformation was traced in­
crementally by updating the corner nodal point coordinates after a convergent solution was
obtained for a particular configuration, Le.

x/ -+x/ + O/At.

The time increment, At, was adjusted continuously to permit only small increments of
deformation. Also, at certain stages in the overall deformation of the cell, a new mesh was
defined so as to redistribute elements and focus them in regions where the strain rate gradients
were large.

7. RESULTS
The principal objective of the analysis of the void growth problem is to determine

quantitatively the influence of the creep stress exponent on the overall ductility of a material
containing voids. A single cell/void size ratio was used corresponding to approximately a 5%
volume concentration of voids (Lo/Ro= 4/1). A series of four tests was performed with values
of the creep exponent, n, equal to 1, 2, 5 and 10. The magnitude of the creep constant, ~, was
fixed at 10-19 [(psi)ft secr l and the constant uniaxially applied strain rate, E22' was fixed at
0.25 x 10-14 sec-I. The numerical results describe the evolution of the void shape and the
redistribution of the stress and strain rate fields with overall deformation.

The shape evolution of the void, as illustrated in Fig. 4 for the case n = 5, typifies the results
for the series. The circular cross section becomes essentially elliptical under the action of a
uniaxially applied strain rate. Initially the void surface contracts laterally but at a slower rate
than for a single void in an infinite medium subjected to the same far field strain rate. This is
due to the attractive interaction effect of the laterally adjacent void. The lateral distance
between the voids decreases despite void contraction since the cell itself is contracting at a
faster rate at this stage. Essentially a condition of plastic instability develops when the lateral
distance becomes sufficiently reduced (UI1.0 = 0.4 in Fig. 4).

The ligament between the void surface and the lateral cell boundary begins to behave in a
manner similar to the necked resion of a tensile test specimen at the point where deviation from
apparent uniform deformation occurs [29]. The lateral displacement of the void surface reverses
direction and the voids coalesce at an accelerated rate (U/1.0 =0.95). This rate is strongly
related to the creep stress exponent of the material. Creep fracture becomes imminent at this
point.

The configuration of one quadrant of a unit void cell, following the initial increments of
deformation is schematically represented in Fig. 5. The material behavior here is linearly
viscous. Hence, the stress distribution will be identical to that for plane strain linear elastic
deformation which is incompressible. The configuration of an imaginary unit cell of the same
dimensions which surrounds a single void in an infinite medium is also shown. The solutions for
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Fig. 4. Shape evolution of a void cell quadrant during creep (Lo!Ro= 4, n = 5).

Fig. 5. Initial displacement. Single void (S.Y.) vs doubly periodic array (D.P.A.)-LoiRo=4, n =I.

the stress and displacement rate field are known in the case of the isolated void [30]. In the
absence of adjacent void interactions, the deformation in the vicinity of the void is greater,
particularly in the regions along the XI and X2 axes. The radial components of displacement rate
at the void surface were evaluated as -0.25 x 10-14 and 0.75 x 10-14 along the XI and X2 axes
respectively. The corresponding values for the doubly periodic array were computed as
-0.1965 x 10-14 and 0.6539 x 10-14 or approximately 80% of the above values.

The initial (t = 0) stress distribution for linearly viscous behavior is illustrated in Fig. 6 for
both the doubly periodic array and the single void geometry. The stress concentration factor at
the void surface is 3.0 for the single void and approximately 2.66 for the array. The lateral void

O"yy (X,L o )

35 s.v.:;..~====-__
30~25 ____

20

'0 20 30 -4-3-2-'

CTXX (0, y)

15

CTxx(X,o)

Fig. 6. Initial stress state (K.S.I.) single void (S.Y.) vs doubly periodic array (Lo/Ro = 4, n = 1).
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Fig. 7. Effective strain rate contours, ilio. Doubly periodic array-uniaxially applied displacement rate
(LoIRo=' 4, n =' 1, t =' 0.0).

10
10 20 30

CTxx (x,o)

Fig. 8. Stress distribution (K.S.I.) doubly periodic array-constant overall strain rate in y-direction (LoiRo=' 4.
n =' I, U/Lo =' 0.5707).

interaction is reflected in larger values of the transverse component of stress (0'11) near the cell
boundary for the array. The net zero traction condition (38j) along the unit cell boundary is
satisfied by the 0'11 distribution shown in Fig. 6.

Effective strain rate contours were derived using eqns (36) and (41). The results for linearly
viscous behavior in the initial configuration are illustrated in Fig. 7. The effective strain rate
values shown here and in subsequent figures have been normalized with respect to the effective.
strain rate of material with the same viscous behavior deforming with the same applied strain
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rate, but containing no voids. The pattern was found to be typical for all values of the creep
exponent. It can be noted that the largest concentration of deformation occurs in the region of
the void surface nearest the XI axis. To a lesser extent, deformation is concentrated along the
diagonal which intersects the void and the r.h.s. of the cell. A third region of moderately
concentrated deformation lies at the void surface nearest the X2 axis where a state of triaxial
compression exists. The stress distribution in the unit cell with linear viscous behavior is
illustrated in Fig. 8 for a subsequent stage of deformation (UILo =0.5707). As deformation
proceeds, the ligament between the void surface and the cell boundary assumes a gradual
necked shape. At UILo = 0.5707, the distribution of 0'22 along the XI axis is approaching the
uniform value 0'22 = L1/V( . S', where L lo VI are the widths of the cell and ligament respec­
tively. Here, S' is the current nominal stress needed to accommodate a constant overall strain
rate for the array. By examining 0'22 along the top of the cell in Fig. 8 it appears that S' is
approx. 29,000 psi at this stage, or 87% of the nominal tensile stress value for the pure material
or single void case.

The effective strain rate contours for the cell at the point UILo = 0.5707 are illustrated in
Fig. 9 (n = 1). The next level of creep exponent which was considered was for the case n = 2.
The effective strain rate contours (I = 0) are shown in Fig. 10. The magnitudes of those
contours in the critical region near the void surface and along the cell diagonal are greater and
the values in other regions are less than for the linear case.

The contours are also shown when UILo = 0.70075 (n = 2) in Fig. 1I. The lateral displace­
ment of the void surface has already reversed direction (UILo = 0.5575) and the strain rate is
becoming more uniform at any section through the lower portion of the ligament. The maximum
strain rate concentration factor at the void surface has decreased from 3.4 (t = 0) to 1.58
(UILo= 0.70075).

The results for the test with a creep exponent equal to five are illustrated in Figs. 12 and 13.

Fig. 9. Fig. 10.

Fig. 9. Effective strain rate contours, ilio. Doubly periodic array-constant uniaxially applied overall strain
rate (LoIRo=4, n =I, UILo=0.5707).

Fig. 10. Effective strain rate contours, ilio. Doubly periodic array-uniaxially applied displacement rate
(Lo/Ro =4, n =2, t =0.0).
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Fig. II.
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Fig. 12.

Fig. II. Effective strain rate contours, ifio. Doubly periodic array-<:onstant uniaxially applied overall strain
rate (LoiRe =4. n =2, UILo=0.70(75).

Fig. 12. Effective strain rate contours, ilio. Doubly periodic array-uniaxially applied displacement rate.
(LoiRe =4, n =5, t =0.0).

30

Fig. 13. Effective strain rate, contours, iJio. Doubly periodic array-<:onstant uniaxially applied overall
strain rate (LoIRe =4, n =5, UILo =0.952).
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Initially, the deformation is even more concentrated in a narrow band along the diagonal of the
unit cell and at the void surface than in the previous cases. A new feature to the contours
appeared at this level of creep exponent and was observed as well for higher values of n. A
second finger of concentrated deformation, similar to that along the diagonal, was found to
extend outwards from the void surface, making an angle of approx. l'r with the XI axis. This
test was continued until an overall deformation of U/Lo =0.95268 was reached. The number of
iterations required for convergence was found to be greater than for n =2, varying from 8 to 13
per increment. The test was terminated at this stage as fracture was imminent. The magnitude
of the lateral displacement rate of the void surface at this stage was 0.1l2x 10-13

• The initial
value was -0.189x 10-14

• The uniform nominal traction across the top of the cell is less than
60% of the nominal stress needed to sustain the same uniaxial strain rate in the material without
voids. The normalized effective strain rate contours for the final increment of deformation are
illustrated in Fig. 13.

The final test in the series of studies on the time dependent finite deformation of the doubly
periodic array was for the case n =to. In obtaining the initial solution for this case, the iterative
procedure provided the initial solutions for the cases n =6, 7, 8 and 9 as well. The normalized
effective strain rate contours for the case n = 9 (t = 0) is illustrated in Fig. 14. The deformation
is extremely localized and concentrated along two bands emanating from the void surface and

Fig. 14. Effective strain rate contours, ilio. Doubly periodic array-uniaxially applied displacement rate.
(LoI~ = 4, n = 9. 1=0.0).

at the intersection of the XI axis and the void surface. It appears that the band along the cell
diagonal represents nearest neighbor interactions. The second shear band which first became
evident for the case n =5 and which is very distinct at n =9, to appears to represent the
second nearest neighbor interactions.

The result which was of primary interest in this study was the effect of the creep exponent
on the extent to which voids interact and the rate at which they coalesce. The response of a
doubly periodic array of voids to a constant uniaxially applied strain rate bears some similarity
to the response of the necked bar in tension having the same steady creep constitutive
behavior. The results of the study of the behavior in the latter case have been previously
discussed [29]. In essence, it was demonstrated there that apparent homogeneous deformation
persisted despite a condition of material instability which existed during the development of a
geometric inhomogeneity. The extent of apparent uniform deformation and the rate of change
in strain just prior to fracture were found to be strongly dependent on the creep stress
exponent. Now consider the results for the deformational behavior of the void array. Let the
initial cell length be denoted as Lo, the initial ligament width along the XI axis as Do, the
decrease in Do as 6 (i.e. 6 =Do- D, D being the current width), and U as the overall
deformation. It then follows for a material without voids, which deforms incompressibly, that
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the longitudinal and transverse measures of strain are given by

u .
(49)Lo = e"221

- 1,

8 _ 1 -<:221 (50)-- -e
Do

and

8 U (51)-=--
Do Lo+U

this relationship has been plotted in Fig. 15 along with the results for the void growth study. Up
to a point, the deviation from apparent homogeneous behavior is not great, at least for the range
of creep exponent values which was used in this study. The tendency, in this primary stage, was
for the value of 81Do at a particular level of overall strain to decrease with higher values of n.
Beyond a point which corresponded to approximately 45% overall strain for this particular void
concentration, the deviation from homogeneous behavior increased. The rate at which this
occurred was strongly dependent on the value of the creep stress exponent. A conservative
estimate of the ductility can be made by extrapolating the curves in Fig. 15 to the point
81Do =1.0. The following approximate values of the true fracture strain, €f> were found:

Table 1. Creep fracture strain for doubly
periodic array of voids, LoIRo '" 4

n

1
2
5

10

1.35
1.03
0.76
0.47

8. SUMMARY
A sufficient amount of evidence exists in support of the fact that failure can occur by the

growth and coalescence of voids. The mechanism by which this process occurs at elevated
temperatures is not clearly understood. Theories have been proposed to explain cavitation by
the stress assisted diffusion of vacancies to the voids or by the time dependent plastic
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n·2

n' I
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Fig. 15. Relative contraction of the ligament between voids vs the overall engineering creep strain of a
doubly periodic array (LoiRo '" 4).
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deformation of the matrix. The work presented here is meant to be a contribution to the latter
theory. The approach which was taken here is similar to the early efforts which were taken to
study ductile rupture by time independent elastic-plastic deformation; namely, to study first the
phenomenon of void interactions for simple uniaxial loading. Certain characteristics of the
deformational behavior of the doubly periodic array were found to be similar to the behavior of
necked creep tension test specimens. The present work establishes a framework for more
comprehensive studies of creep fracture.

An aspect of intergranular fracture which should be examined involves the influence of
cracks. Experimental results [31, 32] show that creep fracture sometimes results from the
propagation of microcracks along grain boundaries. The large triaxial stresses which exist at the
crack tip will cause nearby voids to grow rapidly and will permit the crack to advance by
linking with the voids. Obviously a model that contains these features will predict lower and
more realistic ductilities than those found in the present study. This was the approach that was
taken by Rice and Johnson [22] in their development of a fracture criterion based on the ductile
time independent plastic growth of a void in the vicinity of a crack tip. The computational
scheme presented in the present work permits a similar study for materials undergoing steady
state creep deformation.
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